Spatial and Temporal Effects of Forward Scattering on an Intensity Modulated Source for Laser Communications Underwater
نویسندگان
چکیده
A resurgence is occurring in the area of underwater laser communications. While acoustic systems are currently the more mature technology, they are ultimately band-limited to sub-MHz type data rates due to the frequency dependent absorption of acoustic energies in water. Advances in fiber optic and free space links have shown promise for optical links to provide data rates in excess of a gigabit per second. It is not surprising then, that laser links are being considered for Naval applications involving high bandwidth communications undersea. A major challenge in implementing optical links underwater arises from the spatial dispersion of photons due to scattering. Spatial spreading of the optical beam reduces the photon density at the receiver position. As such, optical links are only expected to be of greatest utility in links <100m. Nonetheless, it appears that end users may accept limited link range in exchange for the gain in information bandwidth that optical links may provide. Additionally, researchers continue to study how spatial spreading affects the time encoded portion of the transmitted optical signal. Temporal dispersion arising from multiple scattering events may result in inter-symbol interference (ISI), further limiting link range and/or capacity. Researchers at NAVAIR in Patuxent River MD are currently investigating both the spatial and temporal effects of scattering on a laser link in turbid underwater environments. These links utilize an intensity modulated beam to implement coherent digital modulation schemes such as PSK and QAM. Through both modeling and experiment, the underwater channel is characterized both spatially and temporally. Results are providing insight to system requirements of link range, pointing accuracy, photo-receiver requirements, modulation frequency, and optimal modulation format.
منابع مشابه
Investigation of the effect of source distance and scattering medium on spatial resolution and contrast of Gamma camera images [Persian]
By identifying the effect of any parameter such as distance, attenuation and scattering on the Line Spread Function (LSF), one can compensate the quantitative and qualitative destructive effect of such parameters by deconvolution method. Using a 99mTC line source, this study was performed on a single head ADAC SPECT system operating in planar mode. Variation of FWTM and FWHM and LSFs as a...
متن کاملInteraction of Laser Beam and Gold Nanoparticles, Study of Scattering Intensity and the Effective Parameters
In this paper, the optical properties of gold nanoparticles investigated. For this purpose the scattering intensity of a laser beam incident on gold nanoparticles has been studied using Mie theory and their respective curves versus different parameters such as scattering angle, wavelength of the laser beam and the size of gold nanoparticles are plotted. Investigating and comparison of the depi...
متن کاملFluctuations of Broadband Acoustic Signals in Shallow Water
The scientific objective of this research is to understand acoustic wave propagation in a dynamic environment in two frequency bands: Low (50 Hz to 500 Hz) and Mid-to-High (500 Hz to 25 kHz). The goal for the low frequency band is to assess the effects of internal waves on acoustic wave propagation, with an emphasis on the mechanisms that cause significant acoustic temporal and spatial intensit...
متن کاملMeasuring the spatial distribution of sound pressure in a fish tank under laboratory conditions (Research Article)
Sound-related behavioural studies explore the effects of sound on underwater animals in tanks under controlled laboratory conditions. In this study, we aim to assess sound pressure distributions and gradients in a small-sized water-filled tank that can be used in behavioural studies to examine anthropogenic sound effects on fish and invertebrates and to raise awareness among scientists in the f...
متن کامل12: Fluctuations of Broadband Acoustic Signals in Shallow Water
The scientific objective of this research is to understand acoustic wave propagation in a dynamic environment in two frequency bands: Low (50 Hz to 500 Hz) and Mid-to-High (500 Hz to 50 kHz). The goal for the low frequency band is to assess the effects of internal waves on acoustic wave propagation, with an emphasis on the mechanisms that cause significant temporal and spatial acoustic intensit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008